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Abstract: 
 10 
Our experience of the world is a continuous stream of events which must be segmented and 
organized simultaneously at multiple timescales. The neural mechanisms underlying this process 
remain unknown. Here, we simultaneously recorded many hundreds of neurons in the lateral 
entorhinal cortex (LEC) of freely behaving rats as we manipulated event structure at multiple 
timescales. During foraging as well as during sleep, population activity drifted continuously and 15 
unidirectionally along a one-dimensional manifold. Boundaries between events were associated 
with discrete shifts in state space, suggesting that LEC dynamics directly reflect event 
segmentation. During tasks with a recurring temporal structure, activity traveled additionally in 
directions orthogonal to the flow of drift, enabling the LEC population to multiplex event 
information across different timescales. Taken together, these results identify a hierarchically 20 
organized neural coding scheme for segmenting and organizing events in time. 
 
Main Text: 
 
We experience the world as a continuous stream of events (1), consisting of things occurring in a 25 
particular order at particular places and times. Episodic memory allows us to mentally revisit 
those experiences by recalling events in sequence (2). While the hippocampus is critical for 
episodic memory (3, 4), and the spatial correlates of such memories have been well described (5, 
6), much less is known about the neural mechanisms underlying the temporal organization of 
episodic memories (7). The passage of time is mirrored by slow drift in neural activity in the 30 
hippocampus (8-12) and one of its major cortical inputs, the lateral entorhinal cortex (LEC) (13, 
14), but the contribution of this drift to the temporal organization of episodic memories has not 
been determined. In particular, it remains unknown whether the drift of neural population 
activity is steady and continuous in time, whether it reflects the structure of experience, and 
whether and how experience is encoded simultaneously at multiple timescales (15, 16). 35 

One important clue is that experience is hierarchically segmented into discrete events across a 
range of timescales from seconds to minutes or more (17). Event boundaries (i.e., times of 
transition between events) are associated with abrupt changes in the external environment or in 
physical location. Such boundaries have profound effects on memory for the duration and order 
of events (9, 17-21) and are accompanied by transient changes in hippocampal activity (16, 21-40 
24). To search for the neural mechanisms that determine how events are segmented and 
organized in time, we monitored the activity of large populations of individually separable 
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neurons during single episodes of experience in brain areas where neural activity is correlated 
with the passage of time. We took advantage of newly developed high-density Neuropixels 2.0 
silicon probes (25) to perform simultaneous extracellular recordings of more than one thousand 
neurons in LEC, medial entorhinal cortex (MEC), and hippocampal area CA1 (CA1) of freely 
behaving rats as we manipulated event structure at multiple timescales. 5 

Continuous one-dimensional drift of LEC population activity 
 
We first sought to characterize LEC dynamics during unconstrained behavior in the absence of 
scheduled events using a free foraging task where rats explored an open field arena and chased 
food crumbs thrown in random locations at variable intervals by the experimenter. We used a 10 
similar paradigm previously to observe that LEC population activity drifts over time (13), but by 
increasing cell yield by an order of magnitude we were now able to avoid pooling neurons across 
experiments and could instead directly quantify neural dynamics during individual events, a 
necessary condition for relating activity to the structure of experience (Fig. 1A; mean = 494 LEC 
neurons per session, 26 sessions, 7 rats; table S1, fig. S1-2). To visualize LEC dynamics over the 15 
course of the session, we first temporally binned the spiking activity of each LEC neuron in 10-
sec bins. Next, we ran principal component analysis (PCA) on this unsmoothed spike count 
matrix (time × neurons) and kept the components that explained 50% of the variance to 
moderately denoise the activity. Lastly, we ran linear discriminant analysis using clock time as 
class labels (1-min epochs) to find dimensions along which the population activity varied most 20 
over time.  
 
We first replicated our previous work (13) showing that LEC population activity drifted over the 
course of minutes (Fig. 1B, left; fig. S3-4). This drift creates trajectories in state space that are 
ordered in time such that the population activity at any given time is most similar to the 25 
neighboring timepoints and becomes more dissimilar as time evolves (quantified below). There 
was little or no drift in neighboring MEC or CA1 during the exact same experience (Fig. 1B, 
middle and right; fig. S3-4). To quantify the amount of drift in LEC and to directly compare it to 
MEC and CA1, we calculated the distance traveled in state space during the 10-min foraging 
session. Distance traveled from the first to last minute of the 10-min session was defined as the 30 
cosine distance between population vectors, calculated in the full n-dimensional space (n = 
neurons) to avoid potential distortions introduced by dimensionality reduction. LEC activity 
drifted significantly farther than MEC and CA1 during the 10 min of foraging (Fig. 1C; fig. 
S4C). Distance travelled from the first minute increased progressively during the session (Fig. 
1B and 1C; fig. S3). 35 
 
The large population recordings achieved with Neuropixels probes enabled us to determine the 
dynamics of neural trajectories during unique experiences. By simultaneously recording 
trajectories in LEC, MEC, and CA1, we were able to show that LEC drifts more than the other 
regions during the exact same experience (fig. S4C). We then quantified whether these 40 
trajectories continuously visited new positions in state space over time, or whether they might 
loop back to the same positions again. Such tangled trajectories would not provide an accurate 
measure of time within an episode because the same neural activity would be associated with 
multiple timepoints. We calculated the degree of trajectory tangling in the state space defined by 
the top two linear discriminants in the following way: for any pair of points along the trajectory,  45 
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Fig. 1. LEC population activity continuously drifts along a one-dimensional manifold without reversing 
direction. (A) Summary of experimental approach. Neuropixels 2.0 silicon probes were used to record large 
populations of neurons simultaneously in one to three brain areas. Rats performed behavioral tasks with different 
degrees of event structure. Population dynamics were visualized and quantified during individual experiences. (B) 
Example state space trajectories (from rat 27285) during 10 min of free foraging show population drift in LEC 
(left) that is largely absent in simultaneously recorded MEC (middle) and CA1 (right) populations. State space is 
defined by top two linear discriminants LD1 and LD2 using 1-min epochs as class labels (see Methods). Small 
dots represent 10-sec time bins, large dots represent average activity during 1-min epochs. Points are colored 
from light to dark to show time within the session. (C) Distance traveled between first and last minutes for all 
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we compared the difference in their derivatives to their distance in state space. Intuitively, if 
points close together have different derivatives there is high tangling, whereas if they have the  
same derivative tangling approaches zero. LEC trajectories had minimal tangling compared to 
MEC and CA1 (Fig. 1D), consistent with LEC activity evolving along a one-dimensional 5 
manifold. To rule out that trajectories followed the same path multiple times (e.g., traveling 
around a ring-shaped manifold would yield minimal tangling), we decoded time within the 
foraging session based on activity from either LEC, MEC, or CA1. We found that a linear 
decoder was sufficient to decode time from LEC activity with an accuracy twice as high as MEC 
and CA1, and over five times higher than chance (Fig. 1E; fig. S4B). This result confirms that 10 
LEC activity evolves unidirectionally such that each timepoint generates a unique population 
state. Downstream brain areas can therefore linearly read out temporal information from LEC 
population vectors. 
 
After demonstrating that LEC population activity drifted in the absence of scheduled events, we 15 
next asked whether it also drifted in the absence of sensory inputs that normally guide behavior. 
We recorded LEC activity as rats voluntarily slept in a small box and focused on epochs of rapid 
eye movement (REM) sleep, when neural dynamics resemble wakefulness. Neural trajectories 
were comparable to those found during foraging (Fig. 1F). To quantify the drift and make a fair 
comparison between REM and wake, we selected REM epochs lasting 2.5 min and compared 20 
them to 2.5-min bouts of foraging data from the same rats. The amount of drift during REM was 
not different from wake (Fig. 1G), and there was no difference in the amount of tangling (Fig. 
1H). These results imply that continuous drift is an inherent property of LEC population activity 
rather than one that requires ongoing experience. This is consistent with observations of drift 
already during the animals’ first experience in the foraging task (Fig. S4D). 25 

sessions and all areas, calculated as cosine distance between population vectors in the full n-dimensional state 
space. Neighbor distances compare adjacent times in LEC as a lower bound of distance traveled. LEC vs MEC: 
t(42) = 4.24, p = 1.19e-4, LEC vs CA1: t(36) = 2.72, p = 0.01, MEC vs CA1: t(28) = -0.55, p = 0.59, LEC vs 
neighbor: t(50) = 3.86, p = 3.25e-4, MEC vs neighbor: t(42) = -0.81, p = 0.43, CA1 vs neighbor: t(36) = -0.03, p = 
0.98, two-sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (D) Tangling of neural 
trajectories quantifies the extent to which nearby state space locations have different movement directions. 
Tangling was calculated in the 2D subspace (LD1 vs LD2). Shuffle obtained by shuffling epoch labels. LEC vs 
MEC: t(42) = -5.95, p = 4.66e-7, LEC vs CA1: t(36) = -5.63, p = 2.16e-6, MEC vs CA1: t(28) = -0.21, p = 0.84, 
LEC vs shuffle: t(80) = -14.14, p = 1.84e-23, MEC vs shuffle : t(72) = -5.13, p = 2.32e-6, CA1 vs shuffle : t(66) = -
4.07, p = 1.27e-4, two-sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (E) 
Decoding accuracy for 1-min epochs within the session using a linear classifier. Decoding performed on principal 
components explaining 50% of variance. LEC vs MEC: t(42) = 5.13, p = 6.92e-6, LEC vs CA1: t(36) = 5.14, p = 
9.83e-6, MEC vs CA1: t(28) = 0.43, p = 0.67, LEC vs shuffle: t(80) = 19.90, p = 1.03e-32, MEC vs shuffle: t(72) = 
9.05, p = 1.71e-13, CA1 vs shuffle: t(66) = 8.64, p = 1.94e-12, two-sample t-test; n = 26, 18, and 12 sessions for 
LEC, MEC, and CA1, respectively. (F) Trajectory in LEC during an example 2.5-min bout of REM sleep. (G) 
Distance traveled between first and last time bins in REM sleep compared to duration-matched data during wake 
in LEC. REM vs wake: t(13) = -1.80, p =0.10, REM vs neighbor: t(19) = 3.04, p = 6.70e-3, wake vs neighbor: 
t(22) = 4.65, p = 1.23e-4, two-sample t-test; n = 6 and 9 bouts for REM and wake, respectively. (H) Tangling in 
REM sleep compared to duration-matched data during wake. REM vs wake: t(13) = 1.43, p =0.18, REM vs 
neighbor: t(19) = -3.28, p = 3.90e-3, wake vs neighbor: t(22) = -8.97, p = 8.32e-9, two-sample t-test; n = 6 and 9 
bouts for REM and wake, respectively. (B-H) Data represented as individual foraging sessions (or REM bouts) 
and mean +/- SEM. ***p < 0.001, **p < 0.01, *p < 0.05, ns = not significant. 



5 
 

Shifts in state space segment events 
 
After showing that LEC dynamics evolve continuously in time without relying on transitions 
between events to propel the drift, we next asked whether and how event boundaries may  
modulate the inherently generated drift. One clue is the fact that LEC neurons encode stimuli 5 
such as odors and objects via time-locked changes in firing rate (26-30). At the population level, 
such abrupt changes in firing rates could evoke abrupt shifts in state space, which would be 
detectable as brief moments of acceleration then deceleration of the neural trajectory (Fig. 2A). 
This would provide a simple mechanism for ensembles of co-active neurons to timestamp event 
boundaries. 10 
 
We searched for such signatures of event segmentation in LEC by measuring the acceleration 
profiles of neural trajectories in the full n-dimensional state space in tasks with different types of 
events over multiple timescales. In the foraging task described above, there were no scheduled 
event boundaries aside from the introduction of the animal to the arena (animals could not 15 
predict when the session would end because sessions were of variable duration and truncated 
post-hoc to 10 min for analysis) (Fig. 2B). We found a deceleration of trajectory speed during the 
first minutes of the session, consistent with a post-boundary deceleration to baseline speed. Next, 
rats were trained to run self-paced laps around a figure-eight maze, motivated by a single reward 
of sweetened chocolate milk at a constant location on each lap (Fig. 2C). Trajectories accelerated 20 
on each lap immediately before the animal reached the reward, which was the one scheduled 
event boundary in the task, and then decelerated again. Lastly, we used an odor sequence task 
that was similar in many ways to the figure-eight task. The only relevant difference here is that 
the central stem of the maze was a treadmill where the rat ran in place for 10 sec, creating an 
additional event within each trial (other task features described below). We observed multiple 25 
changes in trajectory acceleration aligned to the multiple event boundaries within each trial of 
this task (Fig. 2D): a deceleration after the treadmill turned on, an acceleration during reward 
approach, and a deceleration upon reaching the reward. Note how stable the trajectory speeds 
were within each event compared to the boundary-induced shifts. Together, these results indicate 
that shifts in LEC activity are consistently time-locked to event boundaries across a variety of 30 
behaviors. 

To test whether LEC is also sensitive to novel event boundaries, prior to learning, we next 
scheduled event boundaries at times when neural trajectory speeds were known to be stable. 
Animals started by randomly foraging in an empty arena, as above, but every 7.5 min a novel 
object was inserted at a pseudorandom location (Fig. 2E, top). We predicted that object 35 
exploration would elicit shifts in LEC activity due to the coincident activation of object-
responsive neurons (26, 27). Indeed, we found that times of object exploration caused higher 
firing rates in LEC neurons compared to all other time points (fig. S5A). Importantly, the first 
exploration of each object was associated with acceleration of the neural trajectory at the time of 
contact with the object (Fig. 2E), similar to the familiar event boundaries in the other tasks. 40 
Subsequent exploration of the same objects did not cause shifts (Fig. 2E). To avoid biasing our 
search for shifts to periods of object exploration, we also performed an agnostic search of the  
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Fig. 2. Shifts in state space at event boundaries discretize experience. (A) Schematic illustrating the 
hypothesis that trajectories evolve at a constant speed within an event (top) and undergo discrete shifts at event 
boundaries (middle). Plotting the change in trajectory in speed over time reveals a rapid acceleration then 
deceleration at the event boundary (bottom). (B) In the foraging task, entering the box was the only scheduled 
event boundary (top). Neural trajectories decelerated after entering the box and then returned to a constant speed. 
Example trajectory (middle) with arrow indicating change in speed. Mean change in trajectory speed (bottom) at 
each timepoint for all sessions compared to control obtained by shuffling timepoints. Stars mark timepoints where 
mean is below/above the 1st/99th percentile of the shuffled distribution (shaded region). Interaction effect between 
group and time: F(7, 336) = 2.3, p = 0.03, repeated measures ANOVA, n = 26 sessions. (C) In the figure-eight 
task, the reward on each trial (lap) was the only scheduled event boundary. Neural trajectories accelerated during 
reward approach and then decelerated again on each trial. Data displayed as in B. Interaction effect between 
group and time: F(4, 32) = 142.5, p << 0.001, repeated measures ANOVA, n = 5 sessions. (D) In the odor 
sequence task, there were two scheduled event boundaries per trial. Neural trajectories decelerated after the 
treadmill turned on to start the trial. Neural trajectories accelerated during reward approach and then decelerated 
again. Data displayed as in B. Interaction effect between group and time: F(26, 156) = 5.0, p = 6.75e-11, repeated 
measures ANOVA, n = 4 sessions. (E) In the novel objects task, the objects defined the event boundaries. Neural 
trajectories accelerated at the first contact with each object, but not for subsequent contacts with the same object. 
Example trajectory (middle) during contact with OBJ1. Dots represent 10-sec time bins, colors represent 1-min 
epochs. Mean change in trajectory speed (bottom) for first contacts (black) versus later contacts (red). t(33) = 
3.16, p = 3.40e-3, two-sample t-test, n = 35 timepoints. t-test instead of ANOVA as in other panels due to the 
limited number of first contacts. Star here marks significance after Bonferroni correction for multiple 
comparisons at α=0.05. (B-D) Shuffle obtained by shuffling timepoints. (B-E) Data represented as mean +/- 
SEM. Change in trajectory speed calculated as the difference between cosine distance in the full n-dimensional 
space (i.e., population vectors) for neighboring timepoints and the previous two neighboring timepoints. 
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whole experiment for any times where the network became suddenly active as putative times for 
shifts. We identified such times as moments with the population rate exceeded its 90th percentile 
and the increase in population rate from the previous time bin also exceeded its 90th percentile. 
These onsets of synchronous activity were consistently associated with trajectory acceleration 
(fig. S5B). The majority of these synchronous times corresponded to moments of object 5 
exploration (9/15 or 60% within 10 cm radius of object). Similar results were obtained for 
agnostic searches across the trial-based tasks (figure-eight task: 62% +-/ 8% near reward 
location, n = 5 sessions; odor sequence task: 92% +/- 2% near reward locations or treadmill start, 
n = 4 sessions). We thus conclude that event boundaries defined externally as salient changes in 
the world or internally as shifts in neural state space are two sides of the same coin (23). 10 

Multiplexing timescales via orthogonal coding dimensions 
 
Event memories are structured at multiple timescales, from seconds to minutes or hours. We 
asked whether different timescales could be encoded simultaneously in LEC. The trial-based 
tasks described above contain a hierarchy of timescales with individual laps occurring over 15 
seconds and the behavioral session occurring over minutes. To determine if LEC contains 
representations matching each of these timescales during ongoing behavior, we trained rats in a 
repetitive lap running task that caused repetitive neural trajectories in LEC (13) (Fig. 3A; fig. 
S6A-B). From the continuous behavior, we extracted 6-sec trials leading up to the reward. As 
expected from our previous work (13), LEC activity followed similar trajectories during these 6 20 
sec on each lap (trial time; Fig. 3B,E; fig. S6C-E). The large population recordings of the present 
study enabled us to analyze individual trials and compare the trajectories lap-by-lap. We directly 
quantified the alignment of the trajectories by calculating the distances between matched trial 
times across trials and comparing them to the distances between mismatched trial times (Fig. 3C; 
cosine distances in full state space). Subtracting matched distances from mismatched distances 25 
gives an alignment score where positive values indicate that matched times are closer together in 
state space (i.e., the trial trajectories are in register). Trajectories were significantly better aligned 
across trials compared to data where trial times were shuffled (Fig. 3C), and alignments were 
maintained between trajectories for different trial types (left versus right turn trials) (fig. S6E). 
We further confirmed that activity repeated across trials by accurately decoding trial time from 30 
held out trials using a linear decoder (Fig. 3D). Altogether, these observations suggest that LEC 
activity followed stereotypic trajectories over the course of each trial, during the seconds leading 
up to reward. 
 
This finding of repeating trajectories during repetitive behavior is quite the opposite of 35 
continuous drift. To determine if the repetitive nature of the task impacted dynamics also at 
slower timescales, we next zoomed out to the timescale of the behavioral session and asked 
whether drift over minutes was preserved. We performed the exact same analysis as in the 
foraging task to capture change over minutes while ignoring the lap running behavior. 
Continuous drift was still observed (Fig. 3F, fig. S6F-G) during the exact same behavioral 40 
session while repeating trajectories occurred at a faster timescale (Fig. 3E). This suggests that 
drift and repeating trajectories toward learned event boundaries may evolve along independent 
dimensions in state space and that information about these two timescales are multiplexed (fig. 
S6H-I) within the same neural population. 
 45 
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Fig. 3. Diverse timescales are multiplexed in LEC activity using orthogonal coding dimensions.  
(A) In the figure-eight task, rats were trained to run self-paced laps to receive milk rewards at the top of the maze, 
returning down the arm of their choice. Trial times were defined post-hoc as 6 sec leading up to but excluding the 
reward. (B) Example trajectories from light to dark points during individual trials show that trajectories were 
aligned across trials. (C) At each trial time, activity was closer to matched trial times from other trials compared 
to mismatched times from other trials (left). Actual vs shuffle: t(4) = 6.85, p = 2.40e-3, paired t-test, n = 5 
sessions. Schematic (right) shows how alignment was calculated as cosine distance in full dimensional space 
between mismatched trial times minus matched trial times across all trial pairs. (D) Decoding accuracy for 1-sec 
trial times using a linear classifier trained on held out trials. Actual vs shuffle: t(4) = -8.41, p = 1.11e-3, paired t-
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To quantify whether these two coding dimensions – session time and trial time – were 
orthogonal, we calculated the angle between them in the full state space. We found the angle 
between coding dimensions to be approximately 90 degrees, which was significantly larger than  
the variability within each coding dimension (ca. 15 degrees) calculated using a resampling 5 
procedure (Fig. 3G; see Methods). However, while this approach was well-suited to identifying  
the best angle for each timescale, it required two separate sources of input data (trial-based data 
with 1-sec bins vs full session data with 10-sec bins), which prevented us from observing the 
orthogonality in a single subspace. We therefore used a complementary approach, running PCA 
on the trial-based data with 1-sec bins and asking whether any of the top principal components 10 
were well correlated to either trial time or session time. In some cases, there were strong  
correlations to both trial and session time such that we could visualize both coding dimensions in 
a single 2D subspace defined by those principal components (Fig. 3H, left, middle), which are  
orthogonal by definition. Combining these two orthogonal coding dimensions yields a helical 
trajectory where each coil of the helix represents the recurring activity for each trial and the long 15 
axis of the helix represents continuous drift throughout the session (Fig. 3H, right).  
 
Real world experiences, however, do not contain a single recurring event (e.g., one reward per 
trial), but rather consist of many different events across diverse timescales. To test whether LEC 
activity could evolve simultaneously along a larger number of trajectories, we used an odor 20 
sequence task (briefly mentioned above) with recurring, hierarchically organized events 
spanning timescales of seconds to many minutes (Fig. 3I). The rat first ran in place on a treadmill 
for 10 sec. Next, they ran one lap around the figure-eight maze stopping to sample an odorized 
cup of sand and dig for a buried chocolate reward. The odor changed on each lap such that the 

test; n = 5 sessions. (E) Trial-averaged trajectory for example session where small dots represent 1-sec time bins 
on each trial, large dots represent average activity for that time bin over all trials. Points are colored from light to 
dark to show time within the trial. (F) Ignoring trial structure and looking for drift as in the foraging task shows 
that repeating trajectories across trials did not eliminate drift over the course of the session. Small dots represent 
10-sec time bins, large dots represent average activity for 1-min epochs. Points are colored from light to dark to 
show time within the session. (G) The axes of travel during each trial vs during the session were orthogonal. 
Trial-Session vs Within trial: t(4) = 8.22, p = 1.20e-3, Trial-Session vs Within session: t(4) = 23.68, p = 1.89e-5, 
Within trial vs Within session: t(4) = 0.28, p = 0.80; paired t-test, n = 5 sessions. (H) Same example session from 
(E-F) showing a single projection of trial data in the subspace defined by PC2 and PC3. The data is colored by 
either trial time (left) or session time (middle) to further validate that these different timescales are represented by 
orthogonal axes. Schematic (right) shows how activity can repeat across trials while simultaneously drifting in an 
orthogonal direction. (I) In the odor sequence task, rats were trained to run self-paced laps starting with a 10-sec 
treadmill period, then retrieving a buried chocolate reward in an odorized cup of sand, and finally returning to the 
base of the maze for a small milk reward. Each lap constituted one trial. Five odors were presented on 
consecutive laps forming a sequence that was followed by a 5-min rest off of the maze. Each session contained 
three sequence runs, yielding a total of fifteen laps. Schematic (right) shows hierarchy of timescales from a few 
seconds to many minutes. (J) Example session showing sequence runs traced parallel trajectories through state 
space, which could serve to link temporal contexts. Dots represent average activity for each trial. Points are 
colored from light to dark to show time within the session. Trial type and session time were approximately 
orthogonal. (K) Activity was more similar for matched trial types compared to mismatched trial types across 
sequence runs. Actual vs shuffle: t(3) = 3.79, p = 0.03, paired t-test, n = 4 sessions. (C, D, G, K) Data represented 
as mean +/- SEM. ***p < 0.001, **p < 0.01, *p < 0.05, ns = not significant. 
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odors formed a sequence over five laps from odor A to odor E. Lastly, they performed three 
sequence runs (i.e., 15 total trials) with a 5-min rest between runs.  
 
At the short timescale of seconds, LEC activity exhibited repeating trajectories during each trial. 
LEC activity was more similar between trials for matched trial times compared to mismatched 5 
trial times relative to shuffled controls (fig. S7A). These trial-based trajectories were similar to 
those in the figure-eight task above, but extended for approximately 30 sec, demonstrating that 
LEC activity can capture the fine temporal details of extended experience. Moreover, trajectories 
were also aligned across repeated periods on the treadmill (fig. S7B) in the absence of overt 
changes in the external environment. Time on the mill could be accurately decoded from held out 10 
trials using a linear decoder (fig. S7C). 
 
At the long timescale of minutes, LEC activity drifted as in all tasks described above (fig. S7D). 
The activity evolved smoothly from one trial to the next along a linear trajectory during the first 
sequence run. After a 5-min rest, the activity did not continue where it left off. It also did not 15 
retrace the same trajectory or reset and evolve in an arbitrary new direction. Instead, the activity 
reset near the starting point of the original trajectory and evolved along an approximately parallel 
trajectory during the second (and third) sequence run (Fig. 3J). Activity was more similar 
between sequence runs for matched trial types (same position in sequence) than between 
mismatched trial types relative to shuffled controls (Fig. 3J-K, fig. S7E-F). Taken together, these 20 
results are consistent with the idea that LEC implements a flexible, multiscale representation of 
the timing of events. 
 
Slow single-cell dynamics underlying drift 
 25 
We next set out to determine the mechanism underlying drift in LEC population activity. We 
previously found that a subset of LEC neurons exhibited slow changes in firing rate over the 
course of minutes (13). These neurons showed gradual increases or decreases in rate with a 
variety of time constants (i.e., “ramping” neurons), which could conceivably be driving 
population drift. Removing these neurons from the population, however, had no significant 30 
impact on the ability to decode time from the population, suggesting that other neurons played a 
more prominent role in drift. 
 
With access to much larger populations of neurons, here we asked which neurons contributed 
most strongly to drift within individual foraging sessions. To do so, we calculated for each 35 
neuron the fano factor (i.e., variance over mean) of the neuron´s smoothed firing rate (Gaussian 
width = 30 sec). This measure quantifies the variability in firing rate over a timescale of minutes, 
similar to the observed population drift. Activity traces for LEC neurons with high variability 
took a variety of forms, including ramping, multi-peaked activity, and transitions between 
sustained periods of (in)activity (Fig. 4A, top). The remaining neurons exhibited substantial rate 40 
changes at fast timescales yet maintained a stable mean firing rate over minutes (i.e., low 
variability; Fig. 4A, bottom). LEC neurons had significantly higher variability than neurons in 
MEC and CA1 (Fig. 4B), mirroring the differences in population drift shown above. Moreover, 
slow dynamics were not restricted to a defined subset of LEC neurons, but rather were broadly 
distributed throughout the population. 45 
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To test whether these slow dynamics in individual cells were necessary for population drift, we 
removed the top 25% most variable neurons (high fano removed) or removed a size-matched 
random sample of neurons (control) and then recomputed the total distance traveled of the neural 
trajectory. Removing the most variable neurons led to a significant decrease in drift (Fig. 4C), 
indicating that slow dynamics in single cells are required for drift in the population. To test 5 
whether these slow dynamics were sufficient for population drift, we subsampled either the top  
25% most variable neurons within a single session, or a size-matched sample of those same 
neurons pooled across all sessions, and recomputed the total distance traveled. This pooling 
effectively destroys the true correlation structure of the network and averages away sensory 
inputs that are unique to each experience, yet the amount of drift was not reduced (Fig. 4D; fig. 10 

 
Fig. 4. Slow dynamics in individual neurons underlying population drift. (A) Activity traces for the four LEC 
neurons with highest (top) and lowest (bottom) levels of firing rate variability over a scale of minutes in the 
foraging task. Firing rates smoothed with 30-sec (black) or 1-sec (gray) Gaussian. (B) Minute-scale variability for 
each neuron in an example foraging session (left) and mean variability across neurons within each session (right) 
for each brain area. Variability over minutes quantified as log fano factor normalized to a homogeneous Poisson 
neuron such that 0 is same as Poisson. LEC vs MEC: t(42) = 3.79, p = 4.80e-4, LEC vs CA1: t(36) = 1.36, p = 
0.18, MEC vs CA1: t(28) = -1.89, p = 0.07; two-sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and 
CA1, respectively. (C) Distance traveled after subsampling from all cells within a session (Control) or from a 
population that had the top 25% most variable cells removed (High fano removed). Main effect between Control 
and High fano removed: F(1, 53) = 80.2, p = 3.47e-12; repeated measures ANOVA; n = 26, 18, and 12 sessions for 
LEC, MEC, and CA1, respectively. (D) Distance traveled after subsampling the top 25% most variable cells 
within a session (Single session) or from those same neurons pooled across all sessions (Pooled sessions). Drift 
was preserved after pooling which confirms that unique experiences and specific cell-to-cell correlation structure 
is not required for drift. Main effect between Single and Pooled: F(1, 108) = 3.8, p = 0.05; two-way ANOVA; n = 
26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (B-D) Data represented as mean +/- SEM. ***p < 
0.001, ns = not significant. 
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S8A-B). To further demonstrate that slow dynamics are necessary and sufficient for drift, we 
simulated networks of independent neurons that each exhibited slow dynamics and found that 
such networks also drift at the population level (fig. S8C-E). Taken together, the findings suggest 
that drift is driven by slow dynamics in neurons broadly distributed in the population. 
 5 
Synchronous ensemble responses underlying shifts 
 
Finally, we searched for the mechanism underlying shifts at event boundaries. Because our event 
boundaries across different tasks took various forms at multiple timescales, we wondered 
whether there was a general mechanism that could elicit discrete shifts in population activity for 10 
the boundary between any two events. The discreteness implies fast dynamics in individual 
neurons, perhaps via boundary-induced increases in firing rate (13, 21). It remains unknown, 
however, the fraction of the population that responds at the boundary, the form of the responses, 
and whether the responses are stable or unique across repeated encounters with the same 
boundary.  15 
 
To answer these questions, we characterized the responses of individual neurons on a trial-by-
trial basis for each trial-based task described above. In the figure-eight task, 27% of neurons 
exhibited large increases or decreases in firing rate coincident with the shift in population 
activity as the rat approached the reward (Fig. 5A, left). In terms of both the fraction of 20 
responding neurons and the magnitude of the rate changes, single neuron responses were largest 
at the time of the shift compared to all other timepoints (Fig. 5A, right). Similar results were 
obtained in the odor sequence task where small fractions of positively or negatively modulated 
neurons responded at the time of the population shift as the rat approached the reward (Fig. 5B). 
In the novel objects task, there was a larger fraction of neurons that were positively modulated 25 
and a smaller fraction of neurons that were negatively modulated when the rats made first 
contact with each novel object (Fig. 5C). Lastly, we calculated the trial-to-trial variability in 
firing rate for boundary-modulated neurons to assess whether they could potentially barcode 
individual events by generating unique activity patterns at the event boundaries. We restricted 
this analysis to the figure-eight task where each event boundary within a session is identical (i.e., 30 
same reward every lap). Boundary-modulated responses were significantly more variable across 
trials compared to responses in subsets of neurons that preferred times other than the shift (Fig. 
5D-E). This suggests that while boundary-modulated neurons have similar activity on average 
across similar events (Fig. 5A-C), they also display enough trial-to-trial variability to assign a 
unique barcode to each individual event (Fig. 5D). Indeed, we could successfully decode 35 
individual events (trials) using a linear decoder on held out data (Fig. 5F). Taken together, these  
observations point to a general mechanism for the discretization of experience whereby groups 
of neurons exhibit synchronous responses at event boundaries and thereby drive shifts in 
population activity. 
 40 
Discussion: 
 
Leveraging the power of high-density, multi-area unit recordings in freely behaving rats, we 
have shown how event structure impacts neural population dynamics in LEC. When 
experimental conditions were stable, neural population activity in LEC, but not MEC or CA1, 45 
drifted progressively along a non-periodic one-dimensional manifold in the population state  
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Fig. 5. Fast dynamics in individual neurons underlying shifts at event boundaries. (A) Example heat map 
(left) of trial-averaged firing rate for all LEC neurons relative to reward in figure-eight task. Sorting neurons by 
rate change at the time of population shift reveals both positively and negatively modulated neurons. Across all 
sessions, more neurons had their largest rate change at the time of the shift compared to all other trial times (top 
right). Horizontal line indicates chance level of preferring each time bin. The absolute rate change was also 
highest for neurons that changed most at the time of the shift compared to all other times (bottom right). (B) 
Example heat map (left) and summary data (right) showing neurons modulated at the reward-related population 
shift in the odor sequence task. The initial peak on the left corresponds to the other population shift when the 
treadmill turns on. Conventions as in (A). (C) Example heat map (left) and summary data (right) showing neurons 
modulated at the contact-related shift in the novel objects task. Conventions as in (A). (A-C) Modulated neurons 
defined as those with their largest absolute change in rate (relative to previous time bin) at the shift time (vertical 
lines). Chance level fractions (horizontal lines) were 17%, 4%, and 17% for figure-eight, odor sequence, and 
novel objects tasks, respectively, based on the number of time bins in each task. (D) Example data from figure-
eight session showing that even after selecting for neurons with trial-averaged increases in firing rate at the event 
boundary, this subset showed substantial trial-to-trial variability. Note the blue areas showing individual trials 
when these positively modulated neurons actually showed negative responses. The inset to the right highlights six 
example neurons for the first two trials with a population vector (PV) correlation of -0.11, demonstrating that 
LEC activity creates unique barcodes for each trial. (E) Mean PV correlation between responses at event 
boundaries during figure-eight trials for positively modulated neurons (Pos), negatively modulated neurons (Neg), 
and randomly chosen subsets (n = 25) of neurons that preferred times other than the shift (Other). Pos vs Neg: t(8) 
= 1.53, p = 0.17, Pos vs Other: t(8) = -2.60, p = 0.03, Neg vs Other: t(8) = -3.70, p = 6.01e-3, two-sample t-test; n 
= 5 sessions. (F) Unique barcodes for each event enabled accurate decoding of trial number using a linear 
classifier trained on held out data. Decoding error is measured as the difference between actual and predicted trial 
number. Shuffle obtained by shuffling epoch labels. Actual vs shuffle: t(4) = -8.64, p = 9.89e-4, paired t-test; n = 5 
sessions. (A-C, E-F) Data represented as mean +/- SEM. ***p < 0.001, **p < 0.01, *p < 0.05, ns = not 
significant. 
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space, regardless of the animal’s behavior or sleep-wake state. By doing so, the activity 
functioned as a population clock (31), allowing downstream neurons to read out the passage of 
time during experience (7). This continuous drift was interrupted, however, by abrupt shifts at 
event boundaries, including salient changes in the experimental context such as encountering a 
reward or a novel object. These shifts introduced non-linearities in the neural trajectory,  5 
segmenting the stream of experience into discrete events which could later be recalled as 
individual units (7, 24). The combination of drifting and shifting dynamics within a single neural 
population during the stream of experience may be passed on to hippocampal memory circuits 
and underlie temporal memory judgements as well as distortions in temporal memory imposed 
by event boundaries (17). The data are consistent with observations in fMRI studies of human 10 
hippocampus where sharp onset and offset responses at event boundaries (16, 21-23), similar to 
the shifts described in neural spike data here, have been identified as a potential source of bias in 
future judgments of temporal order (21). Our results show that LEC has a mechanism for 
encoding event boundaries as discontinuities in the progressive drift of neural population activity 
in LEC. Discontinuities were associated with bursts of activity in ensembles of LEC cells. How 15 
such discontinuity-generating bursts arise remains to be determined, yet it is known that LEC 
activity is strongly modulated by novelty-related prediction error signals, such as those emerging 
from neuromodulatory systems in the brain stem (32-35). Prediction error signals to LEC could 
shift trajectories in state space, which in turn may account for distortions in memory for temporal 
duration when experiences span event boundaries (36-38).  20 
 
Our findings yield insight into the geometry of drift in neural state space. The population activity 
did not simply drift uniformly across the session. During tasks with repetitive temporal structure, 
activity also traveled (at a faster timescale) in directions orthogonal to the drift, enabling the 
system to multiplex temporal information about the task with the slower changes reflecting 25 
session time. By traveling in independent directions for each behaviorally relevant timescale, the 
neural code in LEC is thus inherently multiscale, with fast timescales nested inside slow 
timescales. Multiscale temporal coding has been studied extensively at the level of neural 
oscillations (39, 40), but few studies have explored longer timescales of seconds to minutes. The 
present findings show that activity can progress along multiple timescales also under non-30 
periodic conditions. Individual neurons were not obviously locked to a single preferred timescale 
but instead flexibly multiplexed different timescales of experience, allowing LEC and readout 
neurons to continuously capture the temporal statistics of the task. This hierarchical 
representation in LEC could facilitate the ability to deconstruct events (17) into sub-events at 
timescales ranging from seconds to minutes or more and thus enable the flexible examination of 35 
memories at a level appropriate for the current goals. 
 
Lastly, we identified candidate mechanisms underlying drift and shifts that provide insight into 
how a multiscale temporal code of experience may be generated. Drift was associated with slow, 
minute-scale variability in the firing rates of individual neurons. While a subset of these neurons 40 
displayed gradual ramping with different time constants (13, 41), most neurons had a variety of 
other forms of slow dynamics. We confirmed in network simulations that the richness of these 
firing rate dynamics in LEC, i.e., the variability over time and between neurons in this area, is 
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the main driver of the slow drift in neural population space. In contrast to drift, shifts in state 
space were associated with synchronous responses of groups of neurons at event boundaries. 
These synchronous responses may be elicited by external inputs targeting subsets of LEC 
neurons, which are known to encode stimuli of a wide variety of sensory modalities, reflecting 
LEC’s position as a node of convergence for inputs from widespread cortical and subcortical 5 
regions (42, 43). They might also be induced by neuromodulatory inputs from the brainstem 
associated with novelty and prediction error (32-35). Boundary responses showed some degree 
of generalization across similar events, but the combination of activated cells varied sufficiently 
between boundaries such that LEC populations, much like those in CA1 (44, 45), collectively 
barcoded the individual events. When read out by neural circuits downstream in the 10 
hippocampus, unique barcodes from LEC at event boundaries may be stored and retained as 
individual, orthogonalized episodic memories (44-47). These memories may then form the basis 
for estimates of duration and temporal order during recall of experiences (7).  
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Materials and Methods 
 
Subjects 
The data were collected from seven adult male Long Evans rats weighing approximately 400–
500 g at time of implantation. The rats were group-housed with one to eight of their male 5 
littermates before surgery and were housed alone in a large two-story enriched metal cage (95 x 
63 x 61 cm) thereafter. They were kept on a 12-h light–12-h dark schedule, with strict control of 
humidity and temperature. All experiments were approved by the Norwegian Food Safety 
Authority (FOTS ID 18011) and performed in accordance with the Norwegian Animal Welfare 
Act and the European Convention for the Protection of Vertebrate Animals used for 10 
Experimental and Other Scientific Purposes. 
 
Surgery and Electrode Implantation 
Rats were implanted with Neuropixels 2.0 silicon probes targeting LEC, MEC, and/or CA1. One 
rat (27284) had a Neuropixels 1.0 single-shank probe implanted in medial entorhinal cortex. 15 
LEC probes were implanted 6.23-7.00 mm posterior to bregma, 3.70-4.05 mm lateral of the 
midline, at an angle of 20 deg in the coronal plane with the tip of the probe pointing laterally. 
Probes were lowered until one or more shanks met resistance at the ventral surface, and were 
then retracted 100 microns, reaching a final depth 7.84-9.11 mm below the pial surface. MEC 
probes were implanted 100 microns anterior to the transverse sinus, 4.60 mm lateral of the 20 
midline, at an angle of 26 deg in the sagittal plane with the tip of the probe pointing anteriorly. 
Probes were lowered 5.50 mm below the pial surface. CA1 probes were implanted 3.80 mm 
posterior to bregma and 3.20 mm lateral of the midline. Probes were lowered 6.00-6.19 mm 
below the pial surface. Table S1 reports the exact implant coordinates for each probe in each rat. 
The implant was secured with dental cement. A small stainless-steel screw was attached to the 25 
skull above the cerebellum and connected to the probe ground and external reference pads with 
insulated silver wire. See (25) for further details of probe implantation. After surgery, rats were 
left to recover until resuming normal locomotor behavior, a minimum of 2 hours. Postoperative 
analgesics (meloxicam and buprenorphine) were administered during recovery. 
 30 
Recording Procedures 
The details of the Neuropixels hardware system and the procedures for freely moving recordings 
have been described previously (25, 48). In brief, electrophysiological signals were amplified 
with a gain of 80, filtered 0.005-10 kHz, and digitized at 30 kHz by the probe’s on-board 
circuitry. The digitized signals were multiplexed by an implant-mounted headstage circuit board 35 
and were transmitted along a lightweight 5-m tether cable, made using twisted pair wiring. 
SpikeGLX software (https://billkarsh.github.io/SpikeGLX/) was used for data acquisition and 
configuring the probes. Three-dimensional motion capture (OptiTrack Flex 13 cameras and 
Motive recording software) was used to track the rat’s head position and orientation by attaching 
a set of five retroreflective markers to the implant during recordings. The 3D marker positions 40 
were projected onto the horizontal plane to yield the rat’s 2D position and head direction. An 
Arduino microcontroller was used to generate digital pulses, which were sent to the Neuropixels 
acquisition system (via direct TTL input) and the OptiTrack system (via infra-red LEDs) to 
permit precise temporal alignment of the recorded data streams. 
 45 
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Behavioral Procedures 
Data were obtained from several recording sessions performed within the first week after 
recovery from surgery. Recordings were performed while the rats engaged in four behavioral 
paradigms (or sleep sessions) using multiple mazes/arenas and rooms. Many distal visual and 
auditory cues were available to the rat. During pre-surgical training and habituation, several of 5 
the rats were food-restricted through intermittent fasting during which food was available ad-
libitum for four hours between 12:00 and 17:30. During that training phase, behavioral 
procedures were done from 8:00 when the animals were maximally food motivated. Food 
restriction ceased a minimum of 24 hr prior to surgery. 
 10 
Foraging Task 
Rats foraged for randomly scattered food crumbs (corn puffs and vanilla cookies) in a square 
open-field arena with a diameter of 1, 1.5, or 2 m. The arena had dark blue or black flooring and 
was enclosed by walls of height 50 cm. Large distal cues were available outside of the arena near 
the room walls. The arena was dimly lit by one or two lamps along the room wall. At the time of 15 
surgery, four rats (27284, 27285, 27963, and 28003) were familiar with the environment and task 
(minimum four x 10 min sessions). Three rats (26863, 26965, and 26966) were completely naïve 
to the arena, room, and task at the time of their first recording session. Recording sessions lasted 
between 12 and 142 min. 
 20 
Figure-eight Task 
Two rats (26965 and 26966) were trained to run laps around a figure-eight maze, receiving one 
reward per lap. The maze was made of wood with vinyl flooring and plastic lips (2 cm high) and 
was elevated 80 cm above the ground by metal table legs. After being placed at the base of the 
maze, rats ran down a 50 cm long (12 cm wide) central stem to the top of the maze which was a 25 
50 x 50 cm square with a small reward port (polyurethane tubing leading to 15 ml conical tube 
cap) at the far end. After drinking a sweetened chocolate milk reward (2.5% sucrose in Oatly 
chocolate milk), the rat could run back along either return arm (12 cm wide) to reach the base of 
the central stem again. The maze was open to the room with many available distal cues. The 
room was dimly lit by two small lamps on the left room wall. Animals were prevented from 30 
running in the wrong direction using a tall plastic barrier during training. During training and 
testing, a large plastic door was also used at the top of the central stem to prevent backtracking. 
The door opened as the rat came down a return arm and closed again after the rat retrieved a 
reward. Animals were considered trained when performing approximately 20 trials per session 
for multiple days and were implanted shortly thereafter. 35 
 
Odor Sequence Task 
One rat (27285) was trained to run laps around the same figure-eight maze described above, with 
a few small modifications. A milk port was added at the base of the central stem. The central 
stem itself was a treadmill with a large front door to prevent the rat from leaving until the 40 
treadmill turned off. At the top of the maze, the rat was presented with an odorized cup of sand 
containing a buried chocolate cookie crumb reward (ChocoLoops). Odors were 1 of 10 common 
household spices, thoroughly mixed in sand with the following concentrations: A = parsley, 1%; 
B = cumin, 0.5%; C = paprika, 1%; D = thyme, 1%; E = cardamom, 0.8%; L = clove, 0.5%; M = 
tarragon, 1%; N = cinnamon, 0.8%; Ø = dill, 1%; P = coffee, 1%. A custom GUI written in 45 
MATLAB was used to control the treadmill, door, and milk delivery. Each trial began when the 
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rat reached the end of the treadmill, which triggered the treadmill to turn on at 30 cm/sec for 10 
sec. After 10 sec, the treadmill turned off and the large front door opened so the rat could run to 
the sand cup to dig for a reward. The rat then ran via either return arm to receive a sweetened 
chocolate milk reward (2.5% sucrose in Oatly chocolate milk) at the base of the central stem, 
before entering the treadmill again to initiate another trial. On each trial the odor in the sand was 5 
different, creating a sequence of five odors A through E across five trials. Sand and odors from 
the previous trial were removed with a handheld vacuum during the 10 sec treadmill run, after 
which the sand cup for the next trial was put in position. This ensured that the rat could not smell 
the upcoming odor or chocolate treat until after leaving the treadmill. These five trials comprised 
a run, and the rat ran three runs with 5 min rest in a flowerpot between each run, and also before 10 
and after the runs: rest, RUN1, rest, RUN2, rest, RUN3, rest. The rat ran this sequence (SEQ1) in 
the morning, and after a 2 hr delay in the home cage, returned to run a second sequence (SEQ2) 
in the afternoon. The only difference between morning and afternoon is that SEQ2 contained five 
different odors L through P. Data from the two different sequences were treated equivalently for 
analysis purposes. Shaping to dig and run laps took several days. Training on the full task with 15 
both sequences occurred over several days and surgery was conducted after training day 3. 
Recordings lasted approximately 30 min for each sequence. 
 
Novel Objects Task 
Two rats (27963 and 28003) foraged for randomly scattered food crumbs (corn puffs and vanilla 20 
cookies) in a square open-field arena, exactly as in the foraging task described above. After 7.5 
min of foraging in the empty arena, a novel object was placed at a pseudorandom location on the 
floor of the arena. Objects had footprints of approximately 10 x 10 cm and were approximately 
15 cm tall. They consisted of common laboratory or household items (e.g., beaker, flask, spray 
bottle, candlestick). 7.5 min later that object was removed and another novel object was placed at 25 
different pseudorandom location. This was repeated once more 7.5 min later resulting in the 
following sequence: Empty, OBJ1, OBJ2, OBJ3. Recordings therefore lasted 30 min. At the time 
of surgery, rats were familiar with the environment and foraging task (minimum four x 10 min 
sessions) but had never experienced objects in the arena before. Both rats went through the OBJ 
experiment several times in different recording sessions. 30 
 
Natural Sleep 
Two rats (27284 and 27285) were recorded during natural sleep by placing them in dedicated 
sleep box made of black acrylic (30 × 30-cm floor, 80 cm height). The floor contained a shallow 
flowerpot lined with several towels to make a nest and rats were habituated to the box over a 35 
minimum of four sessions before implantation. The box walls passed infrared light to enable 
tracking through the walls. Full room lights were on and pink noise was played through the 
computer speakers at approximately 60 dB to mask background sounds. Sleep sessions were 
conducted at the end of the light phase (7:00-8:00) and lasted between 45 and 140 min. 
 40 
Spike Sorting and Unit Selection 
Spike sorting was performed with KiloSort 2.5 with customizations as previously described (48). 
Units were discarded if more than 2% of their interspike interval distribution consisted of 
intervals less than 2 ms. In addition, units were excluded if they had a mean spike rate of less 
than 0.05 Hz or greater than 40 Hz (calculated across the full recording duration), or if they were 45 
recorded on sites outside the region of interest. 
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Preprocessing and Temporal Binning 
Data was not filtered for running speed. Spikes were binned using 0.5-10 sec time bins, 
depending on the timescale of interest for each task, and tracking data was resampled at the same 
time intervals to align it with the spike data. Spike count vectors for each neuron were ‘soft’ 5 
normalized (49) to reduce the impact of strong responses by dividing the counts by the range of 
counts + 5, where 5 is the normalization factor. Spike time matrices for each region consisted of 
all units that met the selection criteria above. 
 
Neural populations were not pooled across recording sessions. By restricting the analysis to 10 
populations of simultaneously recorded neurons, we avoided potential spurious results caused by 
mixing recording sessions of neural activity in different functional modes. The one exception to 
this rule is the analysis presented in Fig. 4D which shows that pooling neurons across recording 
sessions does not eliminate drift at the (pseudo)population level. 
 15 
Sleep Stage Classification 
Sleep stages were identified as described previously (48). Periods of sustained immobility 
(lasting > 120 sec, locomotion speed < 1 cm/sec, head angular speed < 6 deg/sec) were classified 
into SWS and REM based on the theta/delta ratio of MEC population activity. Periods when the 
theta/delta ratio remained above 5.0 for at least 20 sec were classified as REM, whereas periods 20 
when the theta/delta ratio remained below 2.0 for at least 20 sec were classified as SWS. Only 
REM periods were further analyzed. 
 
Dimensionality Reduction 
Dimensionality reduction was used mainly for visualizing neural trajectories. It was additionally 25 
used for quantifying tangling of trajectories and decoding temporal epochs. Distances in state 
space were always calculated in the full dimensional space (see below) to avoid potential 
distortions in lower dimensional embeddings.  
 
Principal component analysis (PCA) was run on the soft normalized spike × time matrices for 30 
each region using the sci-kit learn function PCA. Linear discriminant analysis (LDA) was used to 
find dimensions capturing change over time using the sci-kit learn function 
LinearDiscriminantAnalysis. Principal components explaining 50% of the variance were used as 
input to LDA and class labels were defined as temporal epochs, described above for individual 
tasks. 35 
 
Distance Traveled and Change in Trajectory Speed 
Distance traveled was defined as the cosine distance (using the SciPy function pdist) between 
population vectors in the full dimensional space of N neurons. For comparisons between 
temporal epochs consisting of multiple time bins, distance was calculated as the mean pairwise 40 
distance between the epochs.  
 
Change in trajectory speed (acceleration/deceleration) was defined as the second derivative of 
distances between population vectors for neighboring time bins. Agnostic search for event 
boundaries was done by calculating the instantaneous change in trajectory speed throughout the 45 
whole recording session. Putative times for discrete shifts in state space were defined as those 
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when the population firing rate exceeded the 90th percentile and the increase in population firing 
rate from the previous time bin also exceeded the 90th percentile (different choices of threshold 
yielded similar results). Change in trajectory speed at those onsets of synchronous activity were 
compared to all other times in the recording session. 
 5 
Tangling of Neural Trajectories 
Tangling of neural trajectories was calculated in the 2D space of the top 2 linear discriminants 
following PCA/LDA as described above. Tangling was defined as in (50): 
 

𝑄𝑄(𝑡𝑡) =  max
𝑡𝑡´

|𝑥𝑥�̇�𝑡 − 𝑥𝑥𝑡𝑡´̇ |2

||𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡´||2+ 𝜀𝜀 10 

 
where 𝑥𝑥𝑡𝑡 is the population vector at time 𝑡𝑡, �̇�𝑥𝑡𝑡 is the temporal derivative of the neural state, ||⋅|| is 
the Euclidean norm, and 𝜀𝜀 is a small constant that prevents division by zero. 
 
Decoding of Temporal Epochs 15 
Decoding of temporal epochs was in the full space of linear discriminants following PCA/LDA 
as described above. Data was split into five cross validation folds using the sci-kit learn function 
KFold. For decoding time within a session, time bins were shuffled before splitting into folds so 
that training data consisted of time bins from several temporal epochs. For decoding time within 
a trial or trial type, data was split into five folds based on trials such that entire trials were held 20 
out of the training data. Temporal epochs were predicted for each time bin using the sci-kit learn 
function cross_val_predict. Decoding accuracy was defined as the percentage of correctly 
predicted epochs, averaged over the five folds, using the sci-kit learn function accuracy_score. 
Decoding error was defined as the mean difference in time between predicted and actual epochs. 
 25 
Comparison of Drift during REM Sleep and Wake 
Drift during REM sleep was compared to drift during wake by creating size-matched spike count 
matrices. Two rats (27284 and 27285) with probes in both LEC and MEC (used for detecting 
REM periods) with sleep sessions containing several extended REM periods were included in 
this analysis. Because typical REM periods lasted only a few minutes, periods of 2.5 min were 30 
used to assess drift in both REM sleep and awake foraging. REM periods were truncated by 
keeping the first 2.5 min of candidate REM periods. Foraging periods were truncated by dividing 
the 10-min foraging session into four equal parts. Data for REM and foraging were analyzed 
using 5-sec temporal bins and 30-sec epochs. Distance traveled during REM periods was defined 
(as above) as the mean pairwise cosine distance between first and last temporal epochs. Distance 35 
traveled during foraging was calculated in the exact same manner, but distances were further 
averaged across the four equal parts of a continuous foraging session to avoid ‘double dipping’ 
from the same data. 
 
Definition of Trial Data from Continuous Behavior 40 
Trials in the figure-eight task were defined post-hoc from continuous lap running behavior. 
Trials were aligned based on the x-y position of the rats (from head-mounted markers) just 
before stopping to consume the reward. This point was calculated by finding the mode of the 
distribution of all y-position values throughout the session when the rat was within a defined x-



25 
 

position range capturing the central stem. It was confirmed by manual inspection that this 
corresponded to the location of reward consumption. The trial alignment point was then defined 
as 3 cm below that location to ensure exclusion of reward consumption itself in some analyses. 
For analysis of shifts in state space (Fig. 2), trials were defined from 3 sec before the alignment 
point to 4 sec after (including reward). For analysis of within-trial time (Fig. 3), trials were 5 
defined as the 6-sec periods leading up to the alignment point (excluding reward). 
 
Trials in the odor sequence task were defined based on logged timestamps of the treadmill 
turning on. Each trial started when the treadmill turned on and ended either when the treadmill 
turned on for the next trial, or when it was the final lap of the sequence run, after consuming the 10 
reward at the top of the maze (thus the final laps were shorter than the rest). For comparing 
activity across trials, trials were truncated to the fastest full lap. For observing the full dynamics 
in Fig. 3J, all times during sequence runs and intertrial intervals were included. 
 
Neural Trajectory Alignment 15 
Neural trajectory alignment was used to assess whether matched trial data was closer together in 
state space compared to mismatched trial data. Alignment was defined as: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 =  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚ℎ − 𝐷𝐷𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚ℎ 
 20 
where 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚ℎ is the mean pairwise cosine distance between time bins with mismatched 
temporal epochs and 𝐷𝐷𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚ℎ is the same but for time bins with matched temporal epochs. 
Alignment values were rather small because mismatched distances included comparisons of 
neighboring temporal epochs where distances are expected to be small. 
 25 
Angular Offset between Coding Dimensions 
The angular offset between coding dimensions (e.g., session or trial time) was defined by 
running PCA/LDA, as described above, for each coding dimension (CD) separately. The PC with 
the largest contribution to the top LD was identified and its PC loadings were extracted. The 
same procedure was done for the other CD. Angular offset was defined as: 30 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝑡𝑡 =  cos−1 ( |𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶1 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝐶𝐶𝐶𝐶2| ) 
 
The probability that any pair of vectors is orthogonal increases in higher dimensions. To avoid 
spurious claims of orthogonality, a leave-one-out resampling procedure was used to quantify the 35 
stability of each CD over time. For session time, loadings were re-calculated after leaving out 
one temporal epoch. This was repeated for each temporal epoch. Within CD stability was defined 
as the mean angular offset between each of the resampled vectors and the original vector. For 
trial time, loadings were re-calculated after leaving out one trial. This was repeated for each trial. 
Within CD stability was again defined as the mean angular offset between each of these 40 
resampled vectors and the original vector.  
 
The angular offset approach was well-suited to identifying the best CD vector for each timescale 
yet it required two separate sources of input data (full session data with 10-sec bins versus trial-
based data with 1-sec bins). A complementary approach allowed us to observe the orthogonal 45 
CDs in a single common subspace. PCA was run on the trial-based data with 1-sec bins. Each of 
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the top PCs were then examined to check for strong correlations with either trial time or session 
time. When such correlations were present, we could visualize both coding dimensions in a 
single 2D subspace defined by those PCs, which are orthogonal by definition.  
 
Multiplexing of Coding Dimensions 5 
Multiplexing of coding dimensions (e.g., session or trial time) was defined by running 
PCA/LDA, as described above, for each coding dimension (CD) separately. The PC with the 
largest contribution to the top LD was identified and its absolute PC loadings were extracted. 
The same procedure was done for the other CD. These loadings were plotted against each other 
for visualization and neurons exceeding the 75% percentile of both distributions of loadings were 10 
considered as potential multiplexing neurons (i.e., displaying mixed selectivity) (fig. S6H). 
Neurons at the extreme ends of both distributions of loadings were further visualized as a proof 
of principle that multiplexing of these timescales is possible (fig. S6I). 
 
Minute-scale Variability in Neural Firing Rates 15 
Individual neuron spike trains during 10-min foraging sessions were binned in 0.5 sec bins and 
then smoothed with a Gaussian of width σ = 30 sec. The fano factor of this smoothed firing rate 
vector was defined as: 
 

𝐹𝐹𝐿𝐿𝐴𝐴𝐿𝐿 =
𝑣𝑣𝐿𝐿𝑣𝑣(𝑣𝑣𝐿𝐿𝑡𝑡𝐴𝐴)
𝐴𝐴𝐴𝐴𝐿𝐿𝐴𝐴(𝑣𝑣𝐿𝐿𝑡𝑡𝐴𝐴)

 20 

 
To compare these values to a known reference, simulated spike trains were sampled from a 
homogeneous Poisson process and fano factors were calculated on these simulated Poisson 
neurons in the same manner. Log normalized fano factor values reported in Fig. 4 were obtained 
by dividing the fano factor of each real neuron by the mean fano factor of 500 simulated Poisson 25 
neurons, and then taking the log of this value. Based on this normalization, a value of 0 indicates 
the same amount of variability as observed in Poisson neurons. 
 
Correlation Structure 
Pairwise correlations were calculated as the Pearson correlation between all pairs of smoothed 30 
firing rate vectors during individual 10-min foraging sessions (as defined in previous section).  
 
Breaking correlation structure in fig. S8B was done by circularly shifting unsmoothed firing rate 
vectors for simultaneously recorded neurons relative to each other. Each neuron was shifted in 
time independently by a random interval between -2 min and 2 min. The first and last 2 min of 35 
the spike × time matrix was then truncated to eliminate edge effects from the shifting procedure, 
and distance traveled during the remaining 6 min of the foraging session was calculated as 
above. 
 
Network Simulations of Drift 40 
Simulated spike trains (n = 500 units) were sampled from a homogeneous Poisson process, as 
described above. Each simulated unit was then duplicated such that one copy was smoothed with 
a Gaussian of width σ = 30 sec (slow) and the other copy was smoothed with a Gaussian of 
width σ = 1 sec (fast). Example units are shown in fig. S8C. Neural trajectories and distance 
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traveled over 10 min were calculated for slow and fast populations separately (fig. S8D-E) using 
the same methods described above. This procedure was repeated for a total of 25 simulations, the 
results of which are individually displayed in fig. S8E. 
 
Event Boundary Responses in Individual Neurons 5 
The preferred time for each neuron in trial-based tasks was defined as the time bin with the 
largest absolute change in trial-averaged firing rate relative to the preceding time bin. The 
fraction of neurons preferring each time bin was calculated as the number of neurons preferring 
each bin divided by the total number of simultaneously recorded neurons (i.e., calculated per 
session). The absolute rate change was calculated as the mean absolute change in trial-average 10 
firing relative to the preceding time bin, calculated over all time bins, for all simultaneously 
recorded neurons. 
 
Barcoding of individual events was assessed by calculating the mean population vector 
correlation across all figure-eight trials for different subsets of simultaneously recorded neurons. 15 
Positively modulated neurons were defined as neurons with preferred times (defined in previous 
paragraph) at the event boundary that had a trial-averaged increase in firing rate at that time 
relative to the preceding time bin. Negatively modulated neurons were defined in the same 
manner for neurons with decreases in firing rate. Control populations were defined as random 
samples of 25 simultaneously recorded neurons, and mean population vector correlations were 20 
averaged over 50 random samples. Decoding of trial identity was performed as described above 
(Decoding Temporal Epochs) except that trial numbers were used as epochs instead of trial 
times. All simultaneously recorded neurons were included in the decoding analysis. Decoding 
error was defined as the mean difference in trial number between predicted and actual epochs. 
 25 
Histology and Recording Locations 
Rats were given an overdose of sodium pentobarbital and were perfused intracardially with 
saline followed by 4% formaldehyde. The extracted brains were stored in formaldehyde and a 
cryostat was used to cut 30-μm sagittal sections, which were then Nissl-stained with cresyl 
violet. The probe shank traces were identified in photomicrographs, and a map of the probe 30 
shank was aligned to the histology by using the tip of the probe shank as a reference point. The 
recorded area of the probe was near-parallel to the cutting plane; therefore, it was deemed 
sufficient to perform a flat 2D alignment in a single section. The aligned shank map was then 
used to calculate the anatomical locations of individual recording sites (fig. S1-2). 
 35 
Data Analysis and Statistics 
Data analyses were performed with custom-written scripts in Python 3.10 and MATLAB 2023a 
(MathWorks). Open-source Python packages used were: NumPy, SciPy, and sci-kit learn. 
Statistical analysis was performed in MATLAB. Power analysis was not used to determine 
sample sizes. The study did not involve any experimental subject groups; therefore, random 40 
allocation and experimenter blinding did not apply and were not performed. Error is reported as 
standard error of the mean. Sample sizes are reported in the Results section. 
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Table S1 and Figs. S1 to S8 
 

 
  

 

 

Table S1. Implant coordinates. Each row contains stereotactic coordinates for a single probe. Seven rats 
(separated by thick black lines) each had one to three probes implanted. 
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Fig. S1. Histological confirmation of recording sites for rats with one or two probes. Coronal (LEC) and 
sagittal (MEC) sections stained with cresyl violet show probe placement for each brain area in each rat. Black 
arrows indicate the dorsal and ventral extent of recorded locations along the probe. D = dorsal, V = ventral, M = 
medial, L = lateral, A = anterior, P = posterior. 
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Fig. S2. Histological confirmation of recording sites for rats with three probes. Coronal (LEC, except 27285 
which is sagittal) and sagittal (MEC and CA1) sections stained with cresyl violet show probe placement for each 
brain area in each rat. Black arrows indicate the dorsal and ventral extent of recorded locations along the probe. D 
= dorsal, V = ventral, M = medial, L = lateral, A = anterior, P = posterior. 
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Fig. S3. Alternative visualization of neural trajectories. (A) Similar trajectories obtained by applying linear 
discriminant analysis directly on the matrix of normalized spike counts without first applying principal 
component analysis. (B) Similar trajectories obtained by applying only principal component analysis on the 
matrix of normalized spike counts without subsequently applying linear discriminant analysis. (C) Similar 
trajectories in LEC obtained by using different epoch sizes as class labels for linear discriminant analysis. (D) 
Similar trajectories in LEC obtained by using different bin sizes prior to dimensionality reduction. (A-D) 
Example data (from rat 27285) and plotting conventions are the same as in Fig. 1B. Brain region indicated above 
each panel. 

 

Fig. S4. Further quantification of continuous drift. (A) Number of principal components explaining 50% of 
variance in normalized spike count matrix for all sessions and all areas. n = 26, 18, and 12 sessions for LEC, 
MEC, and CA1, respectively. (B) Decoding error measured in minutes when decoding 1-min epochs within the 
session using a linear classifier. Shuffle obtained by shuffling epoch labels. LEC vs MEC: t(42) = -4.70, p = 
2.79e-5, LEC vs CA1: t(36) = 4.52, p = 6.54e-5, MEC vs CA1: t(28) = 0.01, p = 0.99, LEC vs shuffle: t(80) = -
27.89, p = 5.65e-43, MEC vs shuffle: t(72) = -14.74, p = 1.91e-23, CA1 vs shuffle: t(66) = -15.02, p = 5.62e-23, two-
sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (C) Pairwise comparison of 
distance traveled in state space between simultaneously recorded brain areas confirms regional differences in drift 
during identical experiences. Note that in many sessions the distance traveled in one region was correlated with 
the distance traveled in the other region. Distances calculated in full dimensional space (i.e., population vectors). 
LEC vs MEC: t(16) = 6.23, p = 1.20e-5, LEC vs CA1: t(10) = 2.31, p = 0.04, MEC vs CA1: t(11) = -1.68, p = 
0.12, paired t-test; n = 17, 11, and 12 sessions for each region comparison, respectively. (D) Example LEC 
trajectory from rat 26863 showing that drift is immediately present in the animal’s first ever experience foraging 
in an open field environment. Plotting conventions are the same as in Fig. 1B. (A-B) Data represented as mean +/- 
SEM. (B-C) ***p < 0.001, *p < 0.05, ns = not significant. 

 

Fig. S4. Further quantification of continuous drift. (A) Number of principal components explaining 50% of 
variance in normalized spike count matrix for all sessions and all areas. n = 26, 18, and 12 sessions for LEC, 
MEC, and CA1, respectively. (B) Decoding error measured in minutes when decoding 1-min epochs within the 
session using a linear classifier. Shuffle obtained by shuffling epoch labels. LEC vs MEC: t(42) = -4.70, p = 
2.79e-5, LEC vs CA1: t(36) = 4.52, p = 6.54e-5, MEC vs CA1: t(28) = 0.01, p = 0.99, LEC vs shuffle: t(80) = -
27.89, p = 5.65e-43, MEC vs shuffle: t(72) = -14.74, p = 1.91e-23, CA1 vs shuffle: t(66) = -15.02, p = 5.62e-23, two-
sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (C) Pairwise comparison of 
distance traveled in state space between simultaneously recorded brain areas confirms regional differences in drift 
during identical experiences. Note that in many sessions the distance traveled in one region was correlated with 
the distance traveled in the other region. Distances calculated in full dimensional space (i.e., population vectors). 
LEC vs MEC: t(16) = 6.23, p = 1.20e-5, LEC vs CA1: t(10) = 2.31, p = 0.04, MEC vs CA1: t(11) = -1.68, p = 
0.12, paired t-test; n = 17, 11, and 12 sessions for each region comparison, respectively. (D) Example LEC 
trajectory from rat 26863 showing that drift is immediately present in the animal’s first ever experience foraging 
in an open field environment. Plotting conventions are the same as in Fig. 1B. (A-B) Data represented as mean +/- 
SEM. (B-C) ***p < 0.001, *p < 0.05, ns = not significant. 
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Fig. S4. Further quantification of continuous drift. (A) Number of principal components explaining 50% of 
variance in normalized spike count matrix for all sessions and all areas. n = 26, 18, and 12 sessions for LEC, 
MEC, and CA1, respectively. (B) Decoding error measured in minutes when decoding 1-min epochs within the 
session using a linear classifier. Shuffle obtained by shuffling epoch labels. LEC vs MEC: t(42) = -4.70, p = 
2.79e-5, LEC vs CA1: t(36) = 4.52, p = 6.54e-5, MEC vs CA1: t(28) = 0.01, p = 0.99, LEC vs shuffle: t(80) = -
27.89, p = 5.65e-43, MEC vs shuffle: t(72) = -14.74, p = 1.91e-23, CA1 vs shuffle: t(66) = -15.02, p = 5.62e-23, two-
sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (C) Pairwise comparison of 
distance traveled in state space between simultaneously recorded brain areas confirms regional differences in drift 
during identical experiences. Note that in many sessions the distance traveled in one region was correlated with 
the distance traveled in the other region. Distances calculated in full dimensional space (i.e., population vectors). 
LEC vs MEC: t(16) = 6.23, p = 1.20e-5, LEC vs CA1: t(10) = 2.31, p = 0.04, MEC vs CA1: t(11) = -1.68, p = 
0.12, paired t-test; n = 17, 11, and 12 sessions for each region comparison, respectively. (D) Example LEC 
trajectory from rat 26863 showing that drift is immediately present in the animal’s first ever experience foraging 
in an open field environment. Plotting conventions are the same as in Fig. 1B. (A-B) Data represented as mean +/- 
SEM. (B-C) ***p < 0.001, *p < 0.05, ns = not significant. 
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Fig. S5. Responses to novel event boundaries. (A) Mean population firing rates were higher when animals were 
near objects (< 10 cm) compared to randomly sampled timepoints not near objects. Summary data from all 
sessions. Dots represent 10-sec time bins. t(51) = 5.61, p = 8.45e-7, paired t-test, n = 52 timepoints, ***p < 0.001 
(B) Mean change in trajectory speed for all times of network synchrony (black) during the whole experiment 
showed time-locked acceleration then deceleration whereas random timepoints (red) did not. Stars mark 
timepoints where mean is below/above the 1st/99th percentile of the shuffled distribution (shaded region). 
Interaction effect between Sync and Shuffle: F(4, 112) = 4.89, p = 1.10e-3, repeated measures ANOVA; n = 15 
timepoints. (A-B) Data represented as mean +/- SEM. 
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Fig. S6. Further quantification of figure-eight data. (A) Example behavior during figure-eight task where y-
position on the maze over time is shown with a black line, the reward location is marked with a horizontal dashed 
line, and the 6-sec trials that were extracted post-hoc are shown as shaded gray regions. (B) Distribution of 
intertrial intervals during figure-eight task for each session show that rats ran at their own pace that was variable 
during a session (left). Dots represent individual intervals. Alternation scores for each session show that rats did 
not consistently alternate (values near 1) or have bias for one side (values near 0), confirming their free choice 
running direction on each trial (right). True vs chance value of 0.5: t(4) = 0.51, p = 0.64, one-sample t-test, n = 5 
session. (C) Distance traveled in full state space was larger between the first and last seconds of the trial 
compared to neighboring trial times. Endpoint vs neighbor: t(4) = 8.01, p = 1.30e-3, paired t-test, n = 5 sessions. 
(D) Trial trajectories showed minimal tangling (LD subspace). Actual vs shuffle: t(4) = -9.17, p = 7.85e-4, paired 
t-test, n = 5 sessions. (E) Across all matching trial times, activity was similarly close in the full state space for 
trials of the same type (left versus right turn trials) vs different type, suggesting that both types were represented 
by one shared repeating trajectory. Same vs different: t(4) = -1.45, p = 0.22, paired t-test, n = 5 sessions. (F) 
Distance traveled was larger between the first and last minutes of the session compared to neighboring minutes. 
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Endpoint vs neighbor: t(4) = 5.24, p = 6.30e-3, paired t-test, n = 5 sessions. (G) There was minimal tangling (LD 
subspace) of neural trajectories during each session. Actual vs shuffle: t(4) = -8.45, p = 1.10e-3, paired t-test, n = 5 
sessions. (H) Multiplexing by individual neurons for session time and trial time was assessed by comparing the 
(absolute-valued) loadings onto principal components explaining the most variance for either session time or trial 
time. Vertical and horizontal lines indicate 75th percentiles. Neurons in the top right quadrant multiplexed session 
and trial time. (I) For the circled neurons in (H), firing rates are shown as a function of session time (left) and trial 
time (right). Traces are smoothed with a Gaussian kernel (width indicated in legend). (B-G) Data represented as 
mean +/- SEM. (C-G) ***p < 0.001, **p < 0.01, ns = not significant. 
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Fig. S7. Further quantification of odor sequence data. (A) Activity was more similar for matched trial times 
(i.e., same 1-sec time bin of each trial) compared to mismatched trial times across all trials. Actual vs shuffle: t(3) 
= 4.88, p = 0.02, paired t-test, n = 4 sessions. (B) Activity was more similar for matched mill times compared 
mismatched mill times across all trials. Actual vs shuffle: t(3) = 5.68, p = 0.01, paired t-test, n = 4 sessions. (C) 
Decoding error for 1-sec mill times using a linear classifier trained on held out trials. Decoding performed on 
principal components explaining 50% of variance. Actual vs shuffle: t(3) = -6.44, p = 7.58e-3, paired t-test; n = 4 
sessions. (D) Distance traveled was larger between the first and last minutes of the session compared to 
neighboring minutes. Endpoint vs neighbor: t(3) = 3.81, p = 0.03, paired t-test, n = 4 sessions. (E) Example 
trajectories in LD subspace showing that, in contrast to LEC, sequence runs did not trace parallel trajectories 
through state space in MEC (left) or CA1 (right). Indeed, there were not clear trajectories in state space in MEC 
or CA1 compared to the trajectories for LEC presented in Fig. 3J. Dots represent average activity for each trial. 
Points are colored from light to dark indicating trial number within the session. (F) In contrast to LEC, there was 
no difference in distance between neural activity for matched trial types compared to mismatched trial types 
across runs for MEC (left) or CA1 (right). MEC vs shuffle: t(3) = 1.53, p = 0.22, paired t-test; CA1 vs shuffle: 
t(3) = 0.15, p = 0.89, paired t-test; n = 4 sessions. (A, B, D, F) Alignment and distance traveled calculated in full 
n-dimensional state space. (A-D, F) Data represented as mean +/- SEM. **p < 0.01, *p < 0.05, ns = not 
significant. 
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Fig. S8. Further quantification of slow dynamics associated with drift. (A) Pairwise correlations between 
neurons using smoothed firing rates (Gaussian width = 30 sec) in an example foraging session (left) shows that 
LEC has a weaker correlation structure compared to MEC and CA1. Mean pairwise correlation across all neuron 
pairs within each session (right) shows that LEC correlations across minutes were significantly lower compared 
to MEC and CA1. LEC vs MEC: t(42) = -4.95, p = 1.26e-5, LEC vs CA1: t(36) = -3.00, p = 4.88e-3, MEC vs CA1: 
t(28) = 1.77, p = 0.09; two-sample t-test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (B) 
Breaking correlations within each brain area by independently shifting activity between neurons did not reduce 
the amount of drift, but rather increased the distance traveled. Main effect between Actual and Shifted: F(1, 53) = 
9.41, p = 3.40e-3, repeated measures ANOVA; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively 
(C-E) Introducing slow dynamics in simulated, independent Poisson neurons by smoothing their activity with a 
Gaussian of width 30 sec produces drift compared to those exact same neurons smoothed with a Gaussian of 
width 1 sec. (C) Three simulated units (columns) smoothed with either a 30-sec (top) or 1-sec (bottom) Gaussian 
kernel. (D) Example trajectories showing population drift from slowly varying units (top) and a lack of 
population drift from quickly varying units (bottom). Simulations of population drift used units as depicted in (C). 
(E) Summary data for 25 simulations showing that distance traveled in state space was significantly greater for 
slow vs fast dynamics of individual neurons. Slow vs fast: t(24) = 16.95, p = 7.40e-15, paired t-test, n = 25 
simulations. Thin dashed lines show individual simulations. (A, B, E) Data represented as mean +/- SEM. ***p < 
0.001, **p < 0.01, ns = not significant. 
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